The scientific and technological objectives of QALL-ME pursued three crucial directions: multilingual open domain QA, user-driven and context-aware QA, and learning technologies for QA. The specific research objectives of the project included state-of-art advancements in the complexity of the questions handled by the system(e.g. how questions); the development of a web-based architecture for cross-language QA (i.e. question in one language, answer in a different language); the realization of real-time QA systems for concrete applications; the integration of the temporal and spatial context both for question interpretation and for answer extraction; the development of a robust framework for applying minimally supervised machine learning algorithms to QA tasks; and the integration of mature technologies for automatic speech recognition within the open domain question answering framework.
Emanuele Pianta Award for the Best Master’s Thesis in Computational Linguistics submitted at an Italian university and defended between August 1st 2024 and July 31st 2025
- Deadline: August 1st, 2025 (11:59 pm CEST)
- All details online: https://clic2025.unica.it/emanuele-pianta-award-for-the-best-masters-thesis/
Our pick of the week by @DennisFucci: "Speech Representation Analysis Based on Inter- and Intra-Model Similarities" by Yassine El Kheir, Ahmed Ali, and Shammur Absar Chowdhury (ICASSP Workshops 2024)
#speech #speechtech
Findings from https://ieeexplore.ieee.org/document/10669908 show that speech SSL models converge on similar embedding spaces, but via different routes. While overall representations align, individual neurons learn distinct localized concepts.
Interesting read! @fbk_mt
Cosa chiedono davvero gli italiani all’intelligenza artificiale?
FBK in collaborazione con RiTA lancia un’indagine aperta a tutte/i per capire usi reali, abitudini e bisogni.
Bastano 10 minuti per partecipare, scopri di più: https://magazine.fbk.eu/it/news/italiani-e-ia-cosa-chiediamo-veramente-allintelligenza-artificiale/
🚀 Last call for the Model Compression for Machine Translation task at #WMT2025 (co-located with #EMNLP2025)!
Test data out on June 19 ➡️ 2 weeks for evaluation!
Can you shrink an LLM and keep translation quality high?
👉 https://www2.statmt.org/wmt25/model-compression.html #NLP #ML #LLM #ModelCompression